Signed 2-independence in digraphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on Upper Bound Signed 2-independence in Digraphs

Let D be a finite digraph with the vertex set V (D) and arc set A(D). A two-valued function f : V (D) → {−1, 1} defined on the vertices of a digraph D is called a signed 2-independence function if f(N−[v]) ≤ 1 for every v in D. The weight of a signed 2-independence function is f(V (D)) = ∑ v∈V (D) f(v). The maximum weight of a signed 2independence function of D is the signed 2-independence numb...

متن کامل

Twin signed total Roman domatic numbers in digraphs

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...

متن کامل

P-matrices and signed digraphs

We associate a signed digraph with a list of matrices whose dimensions permit them to be multiplied, and whose product is square. Cycles in this graph have a parity, that is, they are either even (termed e-cycles) or odd (termed o-cycles). The absence of e-cycles in the graph is shown to imply that the matrix product is a P0-matrix, i.e., all of its principal minors are nonnegative. Conversely,...

متن کامل

Bounds on the signed 2-independence number in graphs

Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If ∑ x∈N [v] f(x) ≤ 1 for each v ∈ V (G), where N [v] is the closed neighborhood of v, then f is a signed 2independence function onG. The weight of a signed 2-independence function f is w(f) = ∑ v∈V (G) f(v). The maximum of weights w(f), taken over all signed 2-independence functions ...

متن کامل

Signed Roman k-domination in Digraphs

Let D be a finite and simple digraph with vertex set V (D) and arc set A(D). A signed Roman dominating function (SRDF) on the digraph D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑ x∈N−[v] f(x) ≥ 1 for each v ∈ V (D), where N −[v] consists of v and all inner neighbors of v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2012

ISSN: 0012-365X

DOI: 10.1016/j.disc.2011.09.009